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1 Joint ε-Weak Typicality and the Slepian-Wolf Theorem

1.1 Properties of joint ε-weak typicality

Suppose (X1, Y1), (X2, Y2), . . . are i.i.d. with (Xi, Yi) ∈ X × Y finite and (Xi, Yi) ∼
(p(x, y), x ∈ X , y ∈ Y ). We think of the Xis as being seen by Alice and the Yis as
being seen by Bob.

Definition 1.1 (Joint ε-weak typicality). Define the set A
(n)
ε ⊆ X n × Y n to be the set

of (xn1 , y
n
1 ) ∈X n × Y n such that

1. | − 1
n log p(xn1 )−H(X)| < ε,

2. | − 1
n log p(yn1 )−H(Y )| < ε,

3. | − 1
n log p(xn1 , y

n
1 )−H(X,Y )| < ε.

Here are some properties of this:

Theorem 1.1.

1.
P((Xn

1 , Y
n
1 ) ∈ A(n)

ε )
n→∞−−−→ 1.

Proof. Use the weak law of large numbers.

2.
|A(n)

ε | ≤ 2nH(X,Y )2nε.

Proof. For all (xn1 , y
n
1 ) ∈ A(n)

ε ,

p(xn1 , y
n
1 ) ≥ 2−nH(X,Y )2−nε

and
1 ≥

∑
(xn1 ,y

n
1 )∈A

(n)
ε

p(xn1 , y
n
1 ).
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3. For all large enough n,

|A(n)
ε | ≥ (1− δ)2nH(X,Y )2−nε.

Proof. For all (xn1 , y
n
1 ) ∈ A(n)

ε ,

p(xn1 , y
n
1 ) ≤ 2−nH(X,Y )2nε

and, for all large enough n, ∑
(xn1 ,y

n
1 )∈A

(n)
ε

p(xn1 , y
n
1 ) ≥ 1− δ.

4. If (X̃n
1 , Ỹ

n
1 ) ∼ p(xn1 )p(yn1 ), then

(a)
P((X̃n

1 , Ỹ
n
1 ) ∈ A(n)

ε ) ≤ 2−nI(X;Y )23nε.

Proof. The left hand side is∑
(xn1 ,y

n
1 )

p(xn1 )p(yn1 ) ≤ |A(n)
ε |2−nH(X)2nε2−nH(Y )2nε

≤ 2nH(X,Y )2−nH(X)2−nH(Y )23nε.

(b) For all δ > 0,

P((X̃n
1 , Ỹ

n
1 ) ∈ A(n)

ε ) ≥ (1− δ)2−nI(X;Y )2−3nε.

Proof. The left hand side is∑
(xn1 ,y

n
1 )

p(xn1 )p(yn1 ) ≥ |A(n)
ε |2−nH(X)2−nε2−nH(Y )2−nε

≥ (1− δ)2nH(X,Y )2−nH(X)2−nH(Y )2−3nε.

1.2 The Slepian-Wolf theorem on distributed lossless compression

In this section, lossless is interpreted in the sense of asymptotically vanishing error prob-
ability. The scenario is that Alice sees X1, . . . , Xn and Bob sees Y1, . . . , Yn. The pairs
(Xi, Yi) with i = 1, . . . , n are iid and (Xi, Yi) ∼ (p(x, y), x ∈ X , y ∈ Y ). Alice compresses
Xn

1 , and Bob compresses Y n
1 . A fusion centor sees the compressed representations and

wants to recover (Xn
1 , Y

n
1 ) with small probability of error (going to 0 as n → ∞). The

problem is: What region of (Alice’s bits/symbol, Bob’s bits/symbol) is achievable?
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Definition 1.2. We say that the pair of rates (R1, R2) is achievable if there is a sequence

((e
(1)
n , e

(2)
n , dn), n ≥ 1) where

e(1)n : X n → [M (1)
n ] = {1, . . . ,M (1)

n }, with lim sup
n→∞

1

n
logM (1)

n ≤ R1,

e(2)n : X n → [M (2)
n ], with lim sup

n→∞

1

n
logM (2)

n ≤ R2,

dn : [M (1)
n ]× [M (2)

n ]→X n × Y n,

such that
P(dn(e(1)n (Xn

1 ), e(2)n (Y n
1 )) 6= (Xn

1 , Y
n
1 ))

n→∞−−−→ 0.

Theorem 1.2 (Slepian-Wolf). The set of achievable rate pairs is

{(R1, R2) : R1 ≥ H(X | Y ), R2 ≥ H(Y | X), R1 +R2 ≥ H(X,Y )}.

We will prove the achievability using the probabilistic method ; i.e. we will show that

a suitable ((e
(1)
n , e

(2)
n , dn), n ≥ 1) exists without explicitly demonstrating it. Here is an

example of the probabilistic method.

Example 1.1. Suppose that f : [0, 1] → R+. To show “there exists some x such that
f(x) > 10,” it’s enough to show that E[f(Z)] > 10 where Z ∼ Unif([0, 1]).

Proof. Achievability: It is enough to show that for all ε > 0, if (R1, R2) is such that
R1 ≥ H(X | Y ) + ε, R2 ≥ H(Y | X) + ε, and R1 + R2 ≥ H(X,Y ) + ε, then (R1, R2) is

achievable. We use a “random binning” argument: (e
(1)
n , e

(2)
n , dn) will be random variables

with

3



• e
(1)
n : randomly assign each xn1 ∈ X n to one of M

(1)
n bins uniformly, independently

over xn1 ,

• e
(2)
n : randomly assign each yn1 ∈ Y n to one of M

(2)
n bins uniformly, independently

over yn1

• dn(m
(1)
n ,m

(2)
n ) = (x̂n1 , x̂

n
2 ) if there is exactly one (x̂n1 , ŷ

n
1 ) with e

(1)
n (x̂n1 ) = m

(1)
n and

e
(2)
n (ŷn1 ) = m

(2)
n . Otherwise, dn(m

(1)
n ,m

(2)
n ) can take any value.

Now we upper bound P(dn(e
(1)
n (Xn

1 ), e
(2)
n (Y n

1 )) 6= (Xn
1 , Y

n
1 )), where the randomness is in

both (Xn
1 , Y

n
1 ) and (e

(1)
n , e

(2)
n , dn). We have

P(dn(e(1)n (Xn
1 ), e(2)n (Y n

1 )) 6= (Xn
1 , Y

n
1 )) ≤ P(E0,n)︸ ︷︷ ︸

n→∞−−−→0

+P(E1,n) + P(E2,n) + P(E12,n).

Here,

• E0,n = {(Xn
1 , Y

n
1 ) /∈ A(δ)

n } for some δ > 0, and the corresponding probability goes to
0 as n→∞.

• E1,n = {∃ x̃n1 6= Xn
1 with e

(1)
n (x̃n1 ) = e

(1)
n (Xn

1 ) and (x̃n1 , y
n
1 ) ∈ A(δ)

n }. Here,

P(E1,n) ≤
∑

(xn1 ,y
n
1 )

p(xn1 , y
n
1 )

∑
x̃n1 6=xn1

(x̃n1 ,y
n
1 )∈A

(δ)
n

P(e(1)n (x̃n1 ) = e(1)n (xn1 ))︸ ︷︷ ︸
=1/M

(1)
n

.

Now |{x̃n1 : (x̃n1 , y
n
1 ) ∈ A(δ)

n }| ≤ 2nH(X|Y )22nδ because

1 ≥
∑

x̃n1 :(x̃
n
1 ,y

n
1 )∈A

(δ)
n

p(x̃n1 | yn1 )

=
∑

x̃n1 :(x̃
n
1 ,y

n
1 )∈A

(δ)
n

p(x̃n1 , y
n
1 )

p(yn1 )

≥ |{x̃n1 : (x̃n1 , y
n
1 ) ∈ A(δ)

n }|2−nH(X|Y )2−2nδ.

So
P(E1,n) ≤

∑
(xn1 ,y

n
1 )

p(xn1 , y
n
1 )2nH(X|Y )22nδ2−nR1 .

But R1 > H(X | Y ) + ε by assumption, so if 2δ < ε, the right hand side goes to 0 as
n→∞.

• E2,n is defined similarly to E1,n, and P(E2,n)→ 0 as n→∞.

We are now left with P(E12,n), which we will examine next time.
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